

Test Report: KTB Nr. 2005-22-k

Mechanical load test up to 2400 Pa according to EN 12975-2:2002

for: IFF Kollmannsberger KG

Brand Name: thermo|solar 300N2P

Responsible for Testing: Dipl.-Ing. (FH) A. Schäfer

Date: 9th January 2006

Address:

Fraunhofer-Institute for Solar Energy Systems ISE Heidenhofstraße 2, D-79110 Freiburg Tel.: +49-761-4588-5354; Fax.: +49-761-4588-9354 E-mail: arim.schaefer@ise.fraunhofer.de Internet: www.kollektortest.de

Accreditated according to DIN EN ISO/IEC 17025:2000

Contents

1	Pur	pose for the test	3
2	Test	t Center	3
3	Ord	erer	3
4	Des	cription of the Collector	3
	4.1	Collector	4
	4.2	Absorber	4
	4.3	Insulation and Casing	5
	4.4	Limitations	5
	4.5	Kind of mounting	5
	4.6	Picture of the collector	5
	4.7	Drawing of the collector	6
5	Mec	hanical load test	7
	5.1	Positive pressure test of the collector cover	7
	5.2	Negative pressure test of fixings between the cover and the collector box	7
	5.3	Negative pressure test of mountings	8
		5.3.1 Mountings for a angular roof, on the roof	9
		5.3.2 Mountings for a angular roof, integrated	10
		5.3.3 Mountings for free mounting	12
6	Sun	nmary statement	13
7	Ann	otation to the test report	13

1 Purpose for the test

The Mechanical load test, documented in this report, is a test additional to KTB No. 2003-17-en from 2nd September 2003. The test was performed to reach the requirements for the french solar thermal collector market.

2 Test Center

Test Center for Thermal Solar Systems of Fraunhofer ISE Heidenhofstraße 2, D-79110 Freiburg Tel.: +49-761-4588-5354 or -5141; Fax.: +49-761-4588-9354 E-mail: arim.schaefer@ise.fraunhofer.de; rommel@ise.fraunhofer.de Internet: http://www.kollektortest.de

3 Orderer

IFF Kollmannsberger KG Regierungsplatz 539, 84028 Landshut Tel: +49 0871 274103 Fax: +49 0871 274104

4 Description of the Collector

Expeller:	IFF Kollmannsberger KG
	Regierungsplatz 539
	84028 Landshut
	Tel: +49 0871 274103
	Fax: +49 0871 274104
	E-mail: info@thermosolar.com
Manufacture	T 1 1
Manufacturer:	Thermosolar s.r.o.
Manufacturer:	Thermosolar s.r.o. Na varticke, P.O.Box 45
Manufacturer:	
Manufacturer:	Na varticke, P.O.Box 45
Manufacturer:	Na varticke, P.O.Box 45 96501 Ziar nad Hronom, Slovakia
Manufacturer:	Na varticke, P.O.Box 45 96501 Ziar nad Hronom, Slovakia Tel: +421-45-6016080

4.1 Collector

(MS):	Manufacturer Specification
Туре:	Flat plat collector
Brand name:	thermo solar 300N2P
Serial no.:	61480/1125120027
Year of construction:	2005
Number of test collectors:	1
Collector reference number:	2 KT 18 010 112005
Total area:	2,007 m * 1,008 m = 2,023 m ²
Aperture area:	1,923 m * 0,924 m = 1.777 m 2
Absorber area:	1.780 m ² (MS)
Material of the cover:	ESG white glass
Number of covers:	1
Transmission of the cover:	90,5 %
Thickness of the cover:	4 mm
Weight empty:	39.9 kg
Volume of the fluid:	1.57 I (MS)
Heat transfer fluid:	Propylenglykol (MS)

4.2 Absorber

minium (MS)
()
mm (MS)
vanic selectiv (MS)
% (MS)
% (MS)
oper (MS)
ander (MS)
IS)
mm (MS)
mm (MS)
mm (MS)
steel (MS)
mm (MS)
m (MS)

4.3 Insulation and Casing

Collector dimensions	
Height, width, depth:	2,007 m; 1,008 m; 0,075 m
Thickness of the insulation at the	40 mm
back:	
Thickness of the insulation at the	15 mm
sides:	
Material:	Mineral wool (MS)
Material of the casing:	Aluminium (MS)

4.4 Limitations

Maximum pressure:	20 bar (MS)
Operating pressure:	4,5 bar(MS)
Maximum temperature:	170 °C
Flow range recommendation:	30 l/m²h (MS)

4.5 Kind of mounting

Flat roof, mounted on the roof:	no
Flat roof, integrated:	no
Tilted roof, mounted on the roof:	yes
Tilted roof, integrated:	yes
Free mounting:	yes
Fassade:	no

4.6 Picture of the collector

Figure 1: Picture of the collector thermo|solar 300N2P mounted on the efficiency test facility (Tracker) of Fraunhofer ISE

4.7 Drawing of the collector

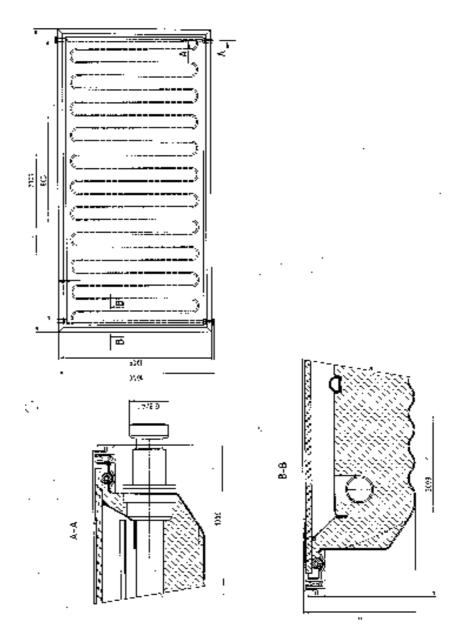


Figure 2: Drawing of the collector-thermo|solar 300N2P

5 Mechanical load test

5.1 Positive pressure test of the collector cover

The positive pressure (according to a positive pressure load caused by snow or wind) was increased in steps of 100 Pa up to the maximum pressure load.

Method used to apply pressure:suction cups, pressedMaximum pressure load:2400 Pa

Figure 3: Positive pressure test of the collector cover

Result:

During and after the test no damage at the cover of the collector was observed.

5.2 Negative pressure test of fixings between the cover and the collector box

The negative pressure (according to a negative pressure load caused by wind) was increased in steps of 100 Pa up to the maximum pressure load.

Method used to apply pressure:	suction cups
Maximum pressure load:	2400 Pa

Figure 4: Negative pressure test of fixings between the cover and the collector box

Result:

During and after the test no damage at the cover or at the cover fixings of the collector was observed.

5.3 Negative pressure test of mountings

Three different mounting systems were tested:

- Mountings for a angular roof, on the roof; special screw installation
- Mountings for a angular roof, integrated; special fixings for regions with high wind speed
- Mountings for free mounting; frame for regions with high wind speed

5.3.1 Mountings for a angular roof, on the roof

The tested mounting system for a angular roof, on the roof, for the collector thermo|solar 300N2P is a system with Stockschraube.

The negative pressure (according to a negative pressure load caused by wind) was increased in steps of 100 Pa up to the maximum pressure load.

Method used to apply pressure:	suction cups
Maximum pressure load:	2400 Pa

Figure 5: Mountings for a angular roof, on the roof; special screw installation

Figure 6: Mountings for a angular roof, on the roof; special screw installation

Result:

During and after the test no damage at the collector mounting fixtures or fixing points was observed.

5.3.2 Mountings for a angular roof, integrated

The tested mounting system for a angular roof, integrated, for the collector thermo|solar 300N2P has special fixings for regions with high wind speed. Four of theses additional fixings belong to each side of the collector, see Figure 9 and 8.

The negative pressure (according to a negative pressure load caused by wind) was increased in steps of 100 Pa up to the maximum pressure load.

Method used to apply pressure:	suction cups
Maximum pressure load:	2400 Pa

Figure 7: Mountings for a angular roof, integrated

Figure 8: Additonal fixings for regions with high wind speed

Figure 9: Position of of additional fixings for regions with high wind speed

Figure 10: Test of mountings for a angular roof, integrated

Result:

During and after the test no damage at the collector mounting fixtures or fixing points was observed.

5.3.3 Mountings for free mounting

The tested mounting system for a free mounting for the collector thermo|solar 300N2P is a special system of the company Thermosolar s.r.o. for regions with high wind. The frame has rods on the sides, see figure 11.

The negative pressure (according to a negative pressure load caused by wind) was increased in steps of 100 Pa up to the maximum pressure load.

Method used to apply pressure:	suction cups
Maximum pressure load:	2400 Pa

Figure 11: Mountings for free mounting

Result:

During and after the test no damage at the collector mounting fixtures or fixing points was observed.

Summary statement 6

The measurements were carried out in November 2005. No problems or distinctive observations occured during the measurements.

Annotation to the test report 7

The results described in this test report refer only to the test collector. It is not allowed to make extract copys of this test report.

Test report: KTB Nr. 2005-22-k

Freiburg, 9th January 2006 Fraunhofer-Institute for Solar Energy Systems ISE

I Rommel A. Schafer

Dipl.-Phys. M. Rommel Head of the Test Center for Thermal Solar Systems

Dipl.-Ing. (FH) A. Schäfer Responsible for Testing